PUBLICATIONS
81.
Development of Nonclassical Photoprecursors for Rh2 Nitrenes
Paikar, A.; Van Trieste III, G.P.; Das, A.; Wang, C.; Sill, T.E.; Bhuvanesh, N.; Powers, D.C. Inorg. Chem., 2023, 62, 12557–12564https://doi.org/10.1021/acs.inorgchem.3c01820
81.
Development of Nonclassical Photoprecursors for Rh2 Nitrenes
Paikar, A.; Van Trieste III, G.P.; Das, A.; Wang, C.; Sill, T.E.; Bhuvanesh, N.; Powers, D.C. Inorg. Chem., 2023, 62, 12557–12564https://doi.org/10.1021/acs.inorgchem.3c01820
80.
Iodanyl Radical Catalysis
Maity A.; Frey B.L.; Powers D.C. Acc. Chem. Res., 2023, 56, 2026–2036.https://doi.org/10.1021/acs.accounts.3c00231
79.
Prospects and challenges for nitrogen-atom transfer catalysis
Cosio, M.N.; Powers, D.C.; Nat. Rev. Chem, 2023. accepted
https://doi.org/10.1038/s41570-023-00482-1
78.
N-Amino pyridinium salts in organic synthesis
Roychowdhury, P.; Samanta, S.; Tan, H.; Powers, D.C.; Org, Chem. Frontiers, 2023. accepted
https://doi.org/10.1039/D3QO00190C
77.
Selective multi-electron aggregation at a hypervalent iodine center by sequential disproportionation
Thai, P.; Frey, B.L.; Figgins, M.T.; Thompson, R. R.; Carmieli, R.; Powers, D.C.; Chem Comm, 2023. accepted.
https://doi.org/10.1039/D3CC00549F
76.
Structure–Activity Relationships for Hypervalent Iodine Electrocatalysis
Frey, B. L.; Thai, P.; Patel, L.; Powers, D. C., Synthesis 2023, (EFirst). DOI: 10.1055/a-2029-0617
75.
On the Mechanism of Intermolecular Nitrogen-Atom Transfer from a Lattice-Isolated Diruthenium Nitride Intermediate
Cosio, M.N.; Alharbi, W.; Sur, A.; Wang C.H.; Najafian, A.; Cundari T.R.; Powers, D. C.*; Jones, C.* Faraday Discuss. 2022, Accepted Mauscript DOI: 10.1039/D2FD00167E.
74.
Activation of Inert Arenes using a Photochemically Activated Guanidinato-Magnesium(I) Compound
Mullins, J. C.; Yuvaraj, K.; Jiang, Y.; Van Trieste, G. P., III; Maity, A.; Powers, D. C.*; Jones, C.* Chem. Eur. J. 2022, early view. DOI: 10.1002/chem.202202103.
73.
Oxygen-Atom Transfer Photochemically of a Molecular Copper Bromate Complex
Van Trieste III, G. P.; Reibenspies, J. H.; Chen, Y.-S.; Sengupta, D.; Thompson, R. R.; Powers, D. C., Chem. Commun. 2022, 58, 12608–12611. DOI:
10.1039/D2CC04403J
72.
Iodine–Iodine Cooperation Enables Metal-Free C–N Bond-Forming Electrocatalysis via Isolable Iodanyl Radicals
Frey, B. L.; Figgins, M. T.; Van Trieste III, G. P.; Carmieli, R.; Powers, D. C., J. Am. Chem. Soc. 2022, 144, 13913–13919. DOI: 10.1021/jacs.2c05562. (Pre-Print: ChemRXiV, 10.26434/chemrxiv-2022-q01tz).
71.
N-Aminopyridinium reagents as traceless activating groups in the synthesis of N-Aryl aziridines
Tan, H.; Samanta, S.; Maity, A.; Roychowdhury, P.; Powers, D. C., Nat. Commun. 2022, 13, 3341–3350. DOI: 10.1038/s41467-022-31032-w.
70.
Traceless Benzylic C–H Amination via Bifunctional N-Aminopyridinium Intermediates.
Roychowdhury, P., Herrera, R., Tan, H. and Powers, D..C., Angew. Chem. Int. Ed., 2022, 61, e202200665. DOI: 10.1002/anie.202200665.
69.
Diversification of Amidyl Radical Intermediates Derived from C–H Aminopyridylation.
Maity, A.*; Roychowdhury, P.*; Herrera, R. G.; Powers, D. C., Org. Lett. 2022, 24, 2762–2766. DOI: 10.1021/acs.orglett.2c00869
*-these authors contributed equally.
68.
Kinetic Probes of the Origin of Activity in MOF-Based C–H Oxidation Catalysis
Sur, A.; Jernigan, N. B.; Powers, D. C., ACS Catalysis 2022, 12, 3858–3867. DOI: 10.1021/acscatal.1c05415. (Pre-Print: ChemRXiV, 10.26434/chemrxiv-2021-8nllf).
67.
Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes
Schmidt-Räntsch, T.; Verplancke, H.; Lienert, J. N.; Demeshko, S.; Otte, M.; Van Trieste Iii, G. P.; Reid, K. A.; Reibenspies, J. H.; Powers, D. C.; Holthausen, M. C.; Schneider, S., Angew. Chem. Int, Ed. 2022, 61. DOI: 10.1002/anie. e202115626.
66.
Bifunctional N-Aminopyridinium Reagents in Benzylic C–H Amination, Deaminative N-Functionalization Cascades
Roychowdhury, P.; Maity, A.; Powers, D. C. 2021, submitted. (Pre-print: ChemRXiv, 2021, DOI: 10.26434/chemrxiv.14677533.v1).
65.
Nitrene Photochemistry of Manganese N-Haloamides
Van Trieste, G..P., Reid, K..A., Hicks, M..H., Das, A., Figgins, M..T., Bhuvanesh, N., Ozarowski, A., Telser, J. and Powers, D..C. Angew. Chem. Int, Ed. 2021, 60, 26647–26655.. DOI: 10.1002/anie.202108304.
(Pre print: ChemRXiv, 2021 https://chemrxiv.org/engage/chemrxiv/article-details/60d21b6f403d992809bbf29c.
64.
Cis-Divacant Octahedral Fe(II) in a Dimensionally Reduced Family of 2-(Pyridin-2-yl)pyrrolide Complexes
Hyun, S.-M.; Reid, K. A.; Vali, S. W.; Lindahl, P. A.; Powers, D. C. Inorg. Chem. 2021, 60, 15617–15626. DOI: 10.1021/acs.inorgchem.1c02240. (Pre-print: ChemRXiv, 2021, DOI: 10.33774/chemrxiv-2021-t8vdn).
63.
Electronic Structure Analysis and Reactivity of the Bimetallic Bis-Titanocene Vinylcarboxylate Complex, [(Cp2Ti)2(O2C3TMS2)].
Huh, D. N.; Maity, A.; Van Trieste, G. P.; Schley, N. D.; Powers, D. C.; Tonks, I. A. Polyhedron, 2021, 207, 115368–115377. DOI: 10.1016/j.poly.2021.115368.
62.
In crystallo organometallic chemistry
Reid, K.; Powers, D.C. Chem. Commun. 2021, 57, 4993–5003 . DOI: 10.1039/d1cc01684a.
61.
Sustainable Methods in Hypervalent Iodine Chemistry. In Iodine Catalysis in Organic Synthesis
Frey, B. L.; Maity, A.; Tan, H.; Roychowdhury, P.; Powers, D. C. Iodine Catalysis in Organic Synthesis; Muniz, K., Ishihara, K. (Eds.); Wiley-VCH, 2022, 335–386.
60.
Leveraging Exchange Kinetics for the Synthesis of Atomically Precise Porous Catalysts
Ezazi, A. A., Gao, W.,Powers, D.C. ChemCatChem. 2021,13, 2117– 2131. DOI: 10.1002/cctc.202002034.
59.
Synthesis and Characterization of Nitrogen Subvalence in a Pt Metallonitrene.
Sengupta, D.; Powers, D. C. Trends Chem. 2021, 3, 251–253. DOI: 10.1016/j.trechm.2020.11.005.
58.
Dual Polymerization Pathways for Polyolefin-Polar Block Copolymer Synthesis via a Palladium Diimine Complex: Mechanism and Scope.
Dau, H.; Keyes, A.; Basbug Alhan, H. E.; Liu, Y.-S.; Ordonez, E.; Gies, A. P.; Auteung, E.; Zhou, Z.; Maity, A.; Das, A.; Powers, D. C.; Beezer, D. B.*; Harth, E.*J. Am. Chem. Soc. 2020, 142, 21469–21483. DOI: 10.1021/jacs.0c10588.
57.
In Crystallo Snapshots of Rh2-Catalyzed C–H Amination.
Das, A.; Wang, C.-H.; Van Trieste, G. P., III; Sun, C.-J.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc. 2020, 142, 19862–19867. DOI: 10.1021/jacs.0c09842. (Pre-print: ChemRXiv, 2020, DOI: 10.26434/chemrxiv.12934784.v1).
56.
Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis
Cosio, M.; Cardenal, A. D.; Maity, A.; Hyun, S.-M.; Akwaowo, V.; Hoffman, C.; Powers, T. M.; Powers, D. C. J. Chem. Ed. 2020, 97, 3816–3821. DOI: 10.1021/acs.jchemed.0c00410.
55.
Synthesis of Atomically Precise Single-Crystalline Ru2-Based Coordination Polymers
Gao, W.-Y.; Van Trieste, G. P., III; Powers, D. C. Dalton Trans. 2020, 49, 16077–16081. DOI: 10.1039/D0DT02233K. (Pre-print: ChemRxiv, 2020, DOI: 10.26434/chemrxiv.12556160.v1).
54.
C–H Amination Mediated by Organoazide-bound Dipyrrinato Cobalt Complexes and the Corresponding Cobalt Nitrene Intermediates
Baek, Y.; Das, A.; Zheng, S.-L.; Powers, D. C.; Betley, T. A. J. Am. Chem. Soc. 2020, 142, 11232–11243. doi: 10.1021/jacs.0c04252.
53.
Kinetic Versus Thermodynamic Metalation Enables Synthesis of Isostructural Homo- and Heterometallic Trinuclear Clusters
Hyun, S.-M.; Upadhyay, A.; Das, A.; Burns, C.; Sung, S.; Beaty, J.; Bhuvanesh, N.; Nippe, M.; Powers, D. C. Chem. Commun. 2020, 56, 5893–5896 doi: 10.1039/D0CC02346A. Pre-print: ChemRxiv, 2020, doi: 10.26434/chemrxiv.12056028.
52.
Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization
Gao, W.-Y.; Sur, A.; Wang, C.-H.; Lorzing, G. R.;Antonio, A. M.; Ezazi, A. A.; Bhuvanesh, N.; Bloch, E. D.; and Powers, D. C. Angew. Chem. Ind. Ed. 2020, 59, 10878–10883. doi: 10.1002/anie.202002638. (Pre-print: ChemRxiv, https://doi.org/10.26434/chemrxiv.11879304.v1).
51.
Crystallography of Reactive Intermediates
Das, A.; Van Trieste, G. P. III.; Powers, D. C. Comm. Inorg. Chem., 2020, 40, 116–158. doi: 10.1080/02603594.2020.1747054.
50.
Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates
Maity, A.; Frey, B. L.; Hoskinson, N. D.; Powers, D. C. J. Am. Chem. Soc. 2020,142, 4990−4995. doi:10.1021/jacs.9b13918. (Pre-print: ChemRxiv, 2019, https://chemrxiv.org/s/f142a8eb0537f4c6213d).
49.
Measuring and Modulating Substrate Confinement during Nitrogen-Atom Transfer in a Ru2-Based Metal-Organic Framework
Wang, C.-H.; Gao, W.-Y.; Powers, D. C. J. Am. Chem. Soc. 2019, 141, 19203−19207. doi: 10.1021/jacs.9b09620.
(Pre-print: ChemRxiv, 2019, doi: https://doi.org/10.26434/chemrxiv.9784514.v1).
48.
Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation
Das, A.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc. 2019, 141, 16232−16236. doi: 10.1021/jacs.9b09064.
(Pre-print: ChemRxiv, 2019, DOI: https://doi.org/10.26434/chemrxiv.9273395.v1).
47.
The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry
Hyun, S.-M.; Yuan, M.; Maity, A.; Gutierrez, O.; Powers, D. C. Chem 2019, 5, 2388–2404. doi: 10.1016/j.chempr.2019.06.006.
46.
Iodosylbenzene Coordination Chemistry Relevant to MOF Catalysis
Cardenal, A. D.; Maity, A.; Gao, W.-Y.; Ashirov, R.; Hyun, S.-M.; Powers, D. C. Inorg. Chem. 2019, 58, 10543−10553. doi: 10.1021/acs.inorgchem.9b01191.
45.
Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts
Gao, W.-Y.; Ezazi, A. A.; Wang, C.-H.; Moon, J.; Abney, C.; Wright, J.; Powers, D. C. Organometallics 2019, 38, 3436–3443. doi:10.1021/acs.organomet.9b00162.
(Pre-print: ChemRxiv, 2019, DOI: 10.26434/chemrxiv.7538747.v1).
44.
High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr(IV) Siloxide Complex and Computational Studies of Related Cr(IV)L4 Systems
Bucinsky, L.; Breza, M.; Powers, D. C.; Hwang, S. J.; Kyzystek, J.; Nocera, D. G.; Telser, J. Inorg. Chem. 2019, 58, 4907-4920.
doi: 10.1021/acs.inorgchem.8b03512.
43.
Templating Metastable Pd2 Carboxylate Aggregates
Wang, C.-H.; Gao, W.-Y.; Ma, Q.; Powers, D. C. Chem. Sci. 2019, 10, 1823-1830. doi: 10.1039/C8SC04940H.
42.
Hypervalent Iodine Chemistry as a Platform for Aerobic Oxidation Catalysis
Maity, A.; Powers, D. C. Synlett 2019, 30, 257–262. doi: 10.1055/s-0037-1610338. (Invited Highlight).
41.
In Operando Analysis of Diffusion in Porous Metal-Organic Framework Catalysts
Gao, W.-Y.; Cardenal, A. D.; Wang, C.-H.; Powers, D. C. Chem. Eur. J. 2019, 25, 3465-3476. doi: 10.1002/chem.201804490.
40.
Observation of a Photogenerated Rh2 Nitrenoid Intermediate in C-H Amination
Das, A.; Maher, A. G.; Telser, J.; Powers, D. C. J. Am. Chem. Soc. 2018, 140, 10412-10415. doi: 10.1021/jacs.8b05599.
39.
Oxidation Catalysis via an Aerobically Generated Dess-Martin Periodinane Analogue
Maity, A.; Hyun, S.-M.; Wortman, A. K.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 7205-7209. doi: 10.1002/anie.201804159. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.6149276)
38.
Probing Substrate Diffusion in Interstitial MOF CHemistry with Kinetic Isotope Effects
Wang, C.-H.; Das, A.; Gao, W.-Y.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 3676-3681. doi: 10.1002/anie.201713244. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.5883142.v1)
37.
Oxidase Catalysis via Aerobically Generated Hypervalent Iodine Intermediates
Maity, A.; Hyun, S.-M.; Powers, D. C. Nat. Chem. 2018, 10, 200-204. doi: 10.1038/nchem.2873. (Preprint available: ChemRxiv, 2017,
doi: 10.26434/chemrxiv.5419270.v1)
36.
Cis-Decalin Oxidation as a Stereochemical Probe of in-MOF versus on-MOF Catalysis
Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377-7380. doi: 10.1039/C7CC02570J.
35.
Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography
Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C. J. Am. Chem. Soc. 2017, 139, 2912-2915. doi: 10.1021/jacs.6b13357.
34.
Oxidation of Metal–Carbon Bonds
Cardenal, A. D.; Powers, D. C. Chem. Molec. Sci. Chem. Eng. 2016, 55, 1–27. doi: 10.1016/B978-0-12-409547-2.13796-5.
91.
Aziridine Group Transfer via Transient N-Aziridinyl Radicals
Biswas, P.; Maity, A.; Figgins, M.T.; Powers* D. C. J. Am. Chem. Soc. 2024, accepted
https://doi.org/10.1021/jacs.4c14169
90.
Metal-Free Aziridination of Unactivated Olefins via Transient N-Pyridinium Iminoiodinanes
Tan, H.; Thai, P.; Sengupta, U.; Deavenport, I. R.; Kucifer, C. M.; Powers* D. C. JACS Au 2024, accepted.
https://doi.org/10.1021/jacsau.4c00556
89.
Hydrogen-bond activation enables aziridination of unactivated olefins with simple iminoiodinanes
Thai, P.; Patel, L.; Manna, D.; Powers*, D. C. Beilstein J. Org. Chem. 2024, 20, 2305–2312.
https://doi.org/10.3762/bjoc.20.197
88.
Bidirectional Electron Transfer Strategies for Anti-Markovnikov Olefin Aminofunctionalization via Arylamine Radicals
Roychowdhury, P.; Samanta, S.; Brown, L.M.; Waheed, S.; Powers*, D.C. ACS Catal. 2024, 14, 13156–13162.
https://doi.org/10.1021/acscatal.4c04110
87.
Synthesis of Secondary Amines via Self-Limiting Alkylation
Roychowdhury, P.; Waheed, S.; Sengupta, U.; Herrera, R.G.; Powers*, D.C. Org. Lett. 2024, 23, 4926–4931.
https://doi.org/10.1021/acs.orglett.4c01430
86.
ß-Phenethylamine Synthesis via Latent Dual Electrophilicity of N-Pyridinium Aziridines
Samanta, S.; Biswas, P.; O'Bannon, B.; Powers, D.C. Angew. Chem. Int. Ed. 2024, e202406335.
https://doi.org/10.1002/anie.202406335
85.
Synthesis, characterization, and photochemistry of Ru2(II,III) complexes of chalcogen oxides
Paikar A.; Martinez, E.A.; Powers, D.C. Polyhedron, 2024, 250, 116798.
https://doi.org/10.1016/j.poly.2023.116798
84.
Unlocking Solid-State Organometallic Photochemistry with Optically Transparent, Porous Salt Thin Films
Sur, A.; Simmons, J. D.; Ezazi, A. A.; Korman, K.; Sarkar, S.; Iverson, E.T.; Bloch, E. D.; Powers, D. C. J. Am. Chem. Soc., 2023, 145, 25068-25073.
https://doi.org/10.1021/jacs.3c09188
83.
Development of Nonclassical Photoprecursors for Rh2 Nitrenes
Paikar, A.; Van Trieste III, G.P.; Das, A.; Wang, C.; Sill, T.E.; Bhuvanesh, N.; Powers, D.C. Inorg. Chem., 2023, 62, 12557–12564
https://doi.org/10.1021/acs.inorgchem.3c01820
82.
Iodanyl Radical Catalysis
Maity A.; Frey B.L.; Powers D.C. Acc. Chem. Res., 2023, 56, 2026–2036.
https://doi.org/10.1021/acs.accounts.3c00231
81.
Prospects and challenges for nitrogen-atom transfer catalysis
Cosio, M.N.; Powers, D.C. Nat. Rev. Chem, 2023. accepted
https://doi.org/10.1038/s41570-023-00482-1
80.
N-Amino pyridinium salts in organic synthesis
Roychowdhury, P.; Samanta, S.; Tan, H.; Powers, D.C. Org, Chem. Frontiers, 2023, 10, 2563–2580
https://doi.org/10.1039/D3QO00190C
79.
Selective multi-electron aggregation at a hypervalent iodine center by sequential disproportionation
Thai, P.; Frey, B.L.; Figgins, M.T.; Thompson, R. R.; Carmieli, R.; Powers, D.C. Chem. Comm. 2023, 59, 4308–4311
https://doi.org/10.1039/D3CC00549F
78.
Structure–Activity Relationships for Hypervalent Iodine Electrocatalysis
Frey, B. L.; Thai, P.; Patel, L.; Powers, D. C. Synthesis 2023, 55, 3019-3025 DOI: 10.1055/a-2029-0617
77.
Copper Complexes with Diazoolefin Ligands and their Photochemical Conversion into Alkenylidene Complexes.
. Kooij, B.; Varava, P.; Fadaei-Tirani, F.; Scopelliti, R.; Pantazis, D. A.; Van Trieste, G. P., III; Powers, D. C.*; Severin, K.*Angew. Chem. Int. Ed. 2023, 62, e202214899. https://doi.org/10.1002/anie.202214899
76.
On the Mechanism of Intermolecular Nitrogen-Atom Transfer from a Lattice-Isolated Diruthenium Nitride Intermediate
Cosio, M.N.; Alharbi, W.; Sur, A.; Wang C.H.; Najafian, A.; Cundari T.R.; Powers, D. C.* Faraday Discuss. 2023, 244, 154-168
https://doi.org/10.1039/D2FD00167E
75.
Activation of Inert Arenes using a Photochemically Activated Guanidinato-Magnesium(I) Compound
Mullins, J. C.; Yuvaraj, K.; Jiang, Y.; Van Trieste, G. P., III; Maity, A.; Powers, D. C.*; Jones, C.* Chem. Eur. J. 2022, 28,e202202103. https://doi.org/10.1002/chem.202202103
74.
Oxygen-Atom Transfer Photochemically of a Molecular Copper Bromate Complex
Van Trieste III, G. P.; Reibenspies, J. H.; Chen, Y.-S.; Sengupta, D.; Thompson, R. R.; Powers, D. C. Chem. Commun. 2022, 58, 12608–12611. https://doi.org/10.1039/D2CC04403J
73
Pyridinium, 1-Amino-2,4,6-Triphenyl-, Perchlorate (and Tetrafluoroborate) Salt
72.
Iodine–Iodine Cooperation Enables Metal-Free C–N Bond-Forming Electrocatalysis via Isolable Iodanyl Radicals
Frey, B. L.; Figgins, M. T.; Van Trieste III, G. P.; Carmieli, R.; Powers, D. C. J. Am. Chem. Soc. 2022, 144, 13913–13919. DOI: 10.1021/jacs.2c05562. (Pre-Print: ChemRXiV, 10.26434/chemrxiv-2022-q01tz).
71.
N-Aminopyridinium reagents as traceless activating groups in the synthesis of N-Aryl aziridines
Tan, H.; Samanta, S.; Maity, A.; Roychowdhury, P.; Powers, D. C. Nat. Commun. 2022, 13, 3341–3350. Highlighted in Synform 2022/11, A169-A171 as literature coverage.
DOI: 10.1038/s41467-022-31032-w.
70.
Traceless Benzylic C–H Amination via Bifunctional N-Aminopyridinium Intermediates.
Roychowdhury, P., Herrera, R., Tan, H. and Powers, D.C. Angew. Chem. Int. Ed., 2022, 61, e202200665. DOI: 10.1002/anie.202200665.
69.
Diversification of Amidyl Radical Intermediates Derived from C–H Aminopyridylation.
Maity, A.*; Roychowdhury, P.*; Herrera, R. G.; Powers, D. C. Org. Lett. 2022, 24, 2762–2766. DOI: 10.1021/acs.orglett.2c00869
*-these authors contributed equally.
68.
Kinetic Probes of the Origin of Activity in MOF-Based C–H Oxidation Catalysis
Sur, A.; Jernigan, N. B.; Powers, D. C., ACS Catalysis 2022, 12, 3858–3867. DOI: 10.1021/acscatal.1c05415. (Pre-Print: ChemRXiV, 10.26434/chemrxiv-2021-8nllf).
67.
Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes
Schmidt-Räntsch, T.; Verplancke, H.; Lienert, J. N.; Demeshko, S.; Otte, M.; Van Trieste Iii, G. P.; Reid, K. A.; Reibenspies, J. H.; Powers, D. C.; Holthausen, M. C.; Schneider, S., Angew. Chem. Int, Ed. 2022, 61. DOI: 10.1002/anie. e202115626.
66.
Bifunctional N-Aminopyridinium Reagents in Benzylic C–H Amination, Deaminative N-Functionalization Cascades
Roychowdhury, P.; Maity, A.; Powers, D. C. 2021, submitted. (Pre-print: ChemRXiv, 2021, DOI: 10.26434/chemrxiv.14677533.v1).
65.
Nitrene Photochemistry of Manganese N-Haloamides
Van Trieste, G..P., Reid, K..A., Hicks, M..H., Das, A., Figgins, M..T., Bhuvanesh, N., Ozarowski, A., Telser, J. and Powers, D..C. Angew. Chem. Int, Ed. 2021, 60, 26647–26655.. DOI: 10.1002/anie.202108304.
(Pre print: ChemRXiv, 2021 https://chemrxiv.org/engage/chemrxiv/article-details/60d21b6f403d992809bbf29c.
64.
Cis-Divacant Octahedral Fe(II) in a Dimensionally Reduced Family of 2-(Pyridin-2-yl)pyrrolide Complexes
Hyun, S.-M.; Reid, K. A.; Vali, S. W.; Lindahl, P. A.; Powers, D. C. Inorg. Chem. 2021, 60, 15617–15626. DOI: 10.1021/acs.inorgchem.1c02240. (Pre-print: ChemRXiv, 2021, DOI: 10.33774/chemrxiv-2021-t8vdn).
63.
Electronic Structure Analysis and Reactivity of the Bimetallic Bis-Titanocene Vinylcarboxylate Complex, [(Cp2Ti)2(O2C3TMS2)].
Huh, D. N.; Maity, A.; Van Trieste, G. P.; Schley, N. D.; Powers, D. C.; Tonks, I. A. Polyhedron, 2021, 207, 115368–115377. DOI: 10.1016/j.poly.2021.115368.
62.
In crystallo organometallic chemistry
Reid, K.; Powers, D.C. Chem. Commun. 2021, 57, 4993–5003 . DOI: 10.1039/d1cc01684a.
61.
Sustainable Methods in Hypervalent Iodine Chemistry. In Iodine Catalysis in Organic Synthesis
Frey, B. L.; Maity, A.; Tan, H.; Roychowdhury, P.; Powers, D. C. Iodine Catalysis in Organic Synthesis; Muniz, K., Ishihara, K. (Eds.); Wiley-VCH, 2022, 335–386.
60.
Leveraging Exchange Kinetics for the Synthesis of Atomically Precise Porous Catalysts
Ezazi, A. A., Gao, W.,Powers, D.C. ChemCatChem. 2021,13, 2117– 2131. DOI: 10.1002/cctc.202002034.
59.
Synthesis and Characterization of Nitrogen Subvalence in a Pt Metallonitrene.
Sengupta, D.; Powers, D. C. Trends Chem. 2021, 3, 251–253. DOI: 10.1016/j.trechm.2020.11.005.
58.
Dual Polymerization Pathways for Polyolefin-Polar Block Copolymer Synthesis via a Palladium Diimine Complex: Mechanism and Scope.
Dau, H.; Keyes, A.; Basbug Alhan, H. E.; Liu, Y.-S.; Ordonez, E.; Gies, A. P.; Auteung, E.; Zhou, Z.; Maity, A.; Das, A.; Powers, D. C.; Beezer, D. B.*; Harth, E.*J. Am. Chem. Soc. 2020, 142, 21469–21483. DOI: 10.1021/jacs.0c10588.
57.
In Crystallo Snapshots of Rh2-Catalyzed C–H Amination.
Das, A.; Wang, C.-H.; Van Trieste, G. P., III; Sun, C.-J.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc. 2020, 142, 19862–19867. DOI: 10.1021/jacs.0c09842. (Pre-print: ChemRXiv, 2020, DOI: 10.26434/chemrxiv.12934784.v1).
56.
Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis
Cosio, M.; Cardenal, A. D.; Maity, A.; Hyun, S.-M.; Akwaowo, V.; Hoffman, C.; Powers, T. M.; Powers, D. C. J. Chem. Ed. 2020, 97, 3816–3821. DOI: 10.1021/acs.jchemed.0c00410.
55.
Synthesis of Atomically Precise Single-Crystalline Ru2-Based Coordination Polymers
Gao, W.-Y.; Van Trieste, G. P., III; Powers, D. C. Dalton Trans. 2020, 49, 16077–16081. DOI: 10.1039/D0DT02233K. (Pre-print: ChemRxiv, 2020, DOI: 10.26434/chemrxiv.12556160.v1).
54.
C–H Amination Mediated by Organoazide-bound Dipyrrinato Cobalt Complexes and the Corresponding Cobalt Nitrene Intermediates
Baek, Y.; Das, A.; Zheng, S.-L.; Powers, D. C.; Betley, T. A. J. Am. Chem. Soc. 2020, 142, 11232–11243. doi: 10.1021/jacs.0c04252.
53.
Kinetic Versus Thermodynamic Metalation Enables Synthesis of Isostructural Homo- and Heterometallic Trinuclear Clusters
Hyun, S.-M.; Upadhyay, A.; Das, A.; Burns, C.; Sung, S.; Beaty, J.; Bhuvanesh, N.; Nippe, M.; Powers, D. C. Chem. Commun. 2020, 56, 5893–5896 doi: 10.1039/D0CC02346A. Pre-print: ChemRxiv, 2020, doi: 10.26434/chemrxiv.12056028.
52.
Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization
Gao, W.-Y.; Sur, A.; Wang, C.-H.; Lorzing, G. R.;Antonio, A. M.; Ezazi, A. A.; Bhuvanesh, N.; Bloch, E. D.; and Powers, D. C. Angew. Chem. Ind. Ed. 2020, 59, 10878–10883. doi: 10.1002/anie.202002638. (Pre-print: ChemRxiv, https://doi.org/10.26434/chemrxiv.11879304.v1).
51.
Crystallography of Reactive Intermediates
Das, A.; Van Trieste, G. P. III.; Powers, D. C. Comm. Inorg. Chem., 2020, 40, 116–158. doi: 10.1080/02603594.2020.1747054.
50.
Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates
Maity, A.; Frey, B. L.; Hoskinson, N. D.; Powers, D. C. J. Am. Chem. Soc. 2020,142, 4990−4995. doi:10.1021/jacs.9b13918. (Pre-print: ChemRxiv, 2019, https://chemrxiv.org/s/f142a8eb0537f4c6213d).
49.
Measuring and Modulating Substrate Confinement during Nitrogen-Atom Transfer in a Ru2-Based Metal-Organic Framework
Wang, C.-H.; Gao, W.-Y.; Powers, D. C. J. Am. Chem. Soc. 2019, 141, 19203−19207. doi: 10.1021/jacs.9b09620.
(Pre-print: ChemRxiv, 2019, doi: https://doi.org/10.26434/chemrxiv.9784514.v1).
48.
Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation
Das, A.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc. 2019, 141, 16232−16236. doi: 10.1021/jacs.9b09064.
(Pre-print: ChemRxiv, 2019, DOI: https://doi.org/10.26434/chemrxiv.9273395.v1).
47.
The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry
Hyun, S.-M.; Yuan, M.; Maity, A.; Gutierrez, O.; Powers, D. C. Chem 2019, 5, 2388–2404. doi: 10.1016/j.chempr.2019.06.006.
46.
Iodosylbenzene Coordination Chemistry Relevant to MOF Catalysis
Cardenal, A. D.; Maity, A.; Gao, W.-Y.; Ashirov, R.; Hyun, S.-M.; Powers, D. C. Inorg. Chem. 2019, 58, 10543−10553. doi: 10.1021/acs.inorgchem.9b01191.
45.
Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts
Gao, W.-Y.; Ezazi, A. A.; Wang, C.-H.; Moon, J.; Abney, C.; Wright, J.; Powers, D. C. Organometallics 2019, 38, 3436–3443. doi:10.1021/acs.organomet.9b00162.
(Pre-print: ChemRxiv, 2019, DOI: 10.26434/chemrxiv.7538747.v1).
44.
High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr(IV) Siloxide Complex and Computational Studies of Related Cr(IV)L4 Systems
Bucinsky, L.; Breza, M.; Powers, D. C.; Hwang, S. J.; Kyzystek, J.; Nocera, D. G.; Telser, J. Inorg. Chem. 2019, 58, 4907-4920.
doi: 10.1021/acs.inorgchem.8b03512.
43.
Templating Metastable Pd2 Carboxylate Aggregates
Wang, C.-H.; Gao, W.-Y.; Ma, Q.; Powers, D. C. Chem. Sci. 2019, 10, 1823-1830. doi: 10.1039/C8SC04940H.
42.
Hypervalent Iodine Chemistry as a Platform for Aerobic Oxidation Catalysis
Maity, A.; Powers, D. C. Synlett 2019, 30, 257–262. doi: 10.1055/s-0037-1610338. (Invited Highlight).
41.
In Operando Analysis of Diffusion in Porous Metal-Organic Framework Catalysts
Gao, W.-Y.; Cardenal, A. D.; Wang, C.-H.; Powers, D. C. Chem. Eur. J. 2019, 25, 3465-3476. doi: 10.1002/chem.201804490.
40.
Observation of a Photogenerated Rh2 Nitrenoid Intermediate in C-H Amination
Das, A.; Maher, A. G.; Telser, J.; Powers, D. C. J. Am. Chem. Soc. 2018, 140, 10412-10415. doi: 10.1021/jacs.8b05599.
39.
Oxidation Catalysis via an Aerobically Generated Dess-Martin Periodinane Analogue
Maity, A.; Hyun, S.-M.; Wortman, A. K.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 7205-7209. doi: 10.1002/anie.201804159. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.6149276)
38.
Probing Substrate Diffusion in Interstitial MOF CHemistry with Kinetic Isotope Effects
Wang, C.-H.; Das, A.; Gao, W.-Y.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 3676-3681. doi: 10.1002/anie.201713244. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.5883142.v1)
37.
Oxidase Catalysis via Aerobically Generated Hypervalent Iodine Intermediates
Maity, A.; Hyun, S.-M.; Powers, D. C. Nat. Chem. 2018, 10, 200-204. doi: 10.1038/nchem.2873. (Preprint available: ChemRxiv, 2017,
doi: 10.26434/chemrxiv.5419270.v1)
36.
Cis-Decalin Oxidation as a Stereochemical Probe of in-MOF versus on-MOF Catalysis
Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377-7380. doi: 10.1039/C7CC02570J.
35.
Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography
Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C. J. Am. Chem. Soc. 2017, 139, 2912-2915. doi: 10.1021/jacs.6b13357.
34.
Oxidation of Metal–Carbon Bonds
Cardenal, A. D.; Powers, D. C. Chem. Molec. Sci. Chem. Eng. 2016, 55, 1–27. doi: 10.1016/B978-0-12-409547-2.13796-5.
Prior to independent career
33. Multielectron C–H Photoactivation with an Sb(V) Oxo Corrole
Lemon, C. M.; Maher, A. G.; Mazzotti, A. R.; Powers, D. C.; Nocera, D. G. Chem. Comm. 2020, 56, 5247–5250.
doi: 10.1039/C9CC09892E.
32. Halogen Photoelimination from Sb(V) Dihalide Corroles
Lemon, C. M.; Hwang, S. J.; Maher, A. G.; Powers, D. C.; Nocera, D. G. Inorg. Chem. 2018, 57, 5333-5342.
doi: 10.1021/acs.inorgchem.8b00314.
31. Gold Corroles as Near-IR Phosphors for Oxygen Sensing
Lemon, C. M.; Powers, D. C.; Brother, P. J.; Nocera, D. G. Inorg. Chem. 2017, 56, 10991–10997.
30. The Energetics and Mechanism of Cl2 Elimination from Binuclear Pt(III) Complexes
Powers, D. C.; Hwang, S. J.; Anderson, B. L.; Yang, H.; Zheng, S.-L. Chen, Y.-S.; Cook, T. R.; Gabbai, F. P.; Nocera, D. G. Inorg. Chem. 2016, 55, 11815–11820.
29. Electronic Structure of Copper Corroles
Lemon, C. M.; Huynh, M.; Maher, A. G.; Anderson, B. L.; Bloch, E. D.; Powers, D. C.; Nocera, D. G. Angew. Chem., Int. Ed. 2016, 55,
2176–2180.
28. Secondary Coordination Sphere Effects in Halogen Photoelimination from Monomeric Ni(III) Complexes
Hwang, S. J.; Anderson, B. L.; Powers, D. C.; Maher, A. G.; Hadt, R. G.; Nocera, D. G. Organometallics 2015, 34, 4766–4774.
27. Trap-Free Chlorine Photoelimination from Mononuclear Ni(III) Complexes
Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2015, 137, 6472–6475.
26. Tandem Redox Mediator/Ni(II) Trihalide Complex Photocycle for Hydrogen Evolution from HCl
Hwang, S. J.; Powers, D. C.; Maher, A. G.; Nocera, D. G. Chem. Sci. 2015, 6, 917–922.
25. Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes
Ullman, A. M.; Liu, Y.; Bediako, D. K.; Huynh, M.; Wang, H.; Anderson, B. L.; Powers, D. C.; Breen, J. J. Abruña, H. D.; Nocera, D. G. J. Am. Chem. Soc. 2014, 136, 17681–17688.
24. Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations
Powers, D. C.; Anderson, B. L.; Hwang, S. J.; Powers, T. M.; Pérez, L. M.; Hall, M. B.; Zheng, S.-L.; Chen, Y.-S.; Nocera; D. G. J. Am. Chem. Soc. 2014, 136, 15346–15355. (Highlighted in: Nature Chem. 2015, 7, 12–13.)
23. Theoretical Analysis of Cobalt Hangman Porphyrins: Ligand Dearomatization and Mechanistic Implications for Hydrogen Evolution
Solis, B. H.; Maher, A. G.; Honda, T. Powers, D. C.; Nocera, D. G.; Hammes-Schiffer, S. ACS Catal. 2014, 4, 4516–4526.
22. Halide-Bridged Binuclear HX-Splitting Catalysts
Powers, D. C.; Hwang, S. J.; Zheng, S.-L.; Nocera, D. G. Inorg. Chem. 2014, 53, 9122–9128.
21. Oxidation of Carbon–Metal Bonds
Powers, D. C.; Ritter, T. Comp. Org. Synth. 2014, Chapter 7.27.
20. Metal–Metal Bond-Containing Complexes as Catalysts for C–H Functionalization
Kornecki, K.; Berry, J. F.; Powers, D. C.; Ritter, T. Prog. Inorg. Chem. 2014, 58, 223–300.
19. Two-Electron Photoreduction of a Ni(II) Halide Enables H2 Evolution from HCl
Powers, D. C.; Anderson, B. L.; Nocera, D. G. J. Am. Chem. Soc. 2013, 135, 18876–18883.
18. Halogen Photoelimination from Dirhodium Phosphazane Complexes via Chloride-Bridged Intermediates
Powers, D. C.; Chambers, M. B.; Teets, T. S.; Elgrishi, N.; Anderson, B. L.; Nocera, D. G. Chem. Sci. 2013, 4, 2880–2885.
17. A Transition State Analogue for the Oxidation of Binuclear Palladium(II) to Binuclear Palladium(III) Complexes
Powers, D. C.; Ritter, T. Organometallics 2013, 32, 2042–2045.
16. Bimetallic Catalysis with Palladium
Powers, D. C.; Ritter, T. In Science of Synthesis; Trost, B. M.; Stoltz, B. M., Eds.; Thieme: Stuttgart, 2012; Vol. 1, 1–31.
15. Connecting Binuclear Pd(III) and Mononuclear Pd(IV) Chemistry by Pd–Pd Bond Cleavage
Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 12002–12009.
14. Bimetallic Redox Synergy in Oxidative Palladium Catalysis
Powers, D. C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840–850.
13. Synthesis and Structure of Solution-Stable One-Dimensional Palladium Wires
Campbell, M. G.; Powers, D. C.; Raynaud, J.; Graham, M. J.; Xie, P.; Lee, E.; Ritter, T. Nature Chem. 2011, 3, 949–953.
12. A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging
Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334, 639–642.
11. Palladium(III) in Synthesis and Catalysis
Powers, D. C.; Ritter, T. Top. Organomet. Chem. 2011, 35, 129–156.
10. On the Mechanism of Palladium-Catalyzed Aromatic C–H Oxidation
Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14530–14536.
9. Bimetallic Reductive Elimination from Dinuclear Pd(III) Complexes
Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14092–14103.
8. Bimetallic Palladium Catalysis: Direct Observation of Pd(III)–Pd(III) Intermediates
Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050–17051.
7. Bimetallic Pd(III) Complexes in Palladium-Catalysed Carbon–Heteroatom Bond Formation
Powers, D. C.; Ritter, T. Nature Chem. 2009, 1, 302–309. (Highlighted in: Nature 2009, 459, 917–918.)
6. Thermal Isomerizations of cis,anti,cis-Tricyclo[6.4.0.02,7]dodec-3-ene to trans- and cis-endo-Tricyclo[6.2.2.02,7]dodec-9-ene: Diradical Conformations and Stereochemical Outcomes in [1,3] Carbon Shifts
Baldwin, J. E.; Bogdan, A. R.; Leber, P. A.; Powers, D. C. Tetrahedron 2007, 63, 6331–6338.
5. Thermal Chemistry of Bicyclo[4.2.0]oct-2-enes
Powers, D. C.; Leber, P. A.; Gallagher, S. S.; Higgs, A. T.; McCullough, L. A.; Baldwin, J. E. J. Org. Chem. 2007, 72, 187–194.
4. Thermal Reactions of 7-d- and 8-d-Bicyclo[4.2.0]oct-2-enes
Baldwin, J. E.; Leber, P. A.; Powers, D. C. J. Am. Chem. Soc. 2006, 128, 10020–10021.
3. Thermal Reactions of 8-Methylbicyclo[4.2.0]oct-2-enes: Competitive Diradical-Mediated [1,3] Sigmatropic, Stereomutation, and Fragmentation Processes
Bogle, X. S.; Leber, P. A.; McCullough, L. A.; Powers, D. C. J. Org. Chem. 2005, 70, 8913–8918.
2. Thermal Isomerization of cis,anti,cis-Tricyclo[6.3.0.02,7]undec-3-ene to endo-Tricyclo[5.2.2.02,6]undec-8-ene
Baldwin, J. E.; Bogdan, A. R.; Leber, P. A.; Powers, D. C. Org. Lett. 2005, 7, 5195–5197.
1. Analysis of Natural Buffer Systems and the Impact of Acid Rain. An Environmental Project for First-Year Chemistry Students
Powers, D. C.; Higgs, A. T.; Obley, M. L.; Leber, P. A.; Hess, K. R.; Yoder, C. H. J. Chem. Educ. 2005, 82, 274–277.