top of page

PUBLICATIONS

81.

Development of Nonclassical Photoprecursors for Rh2 Nitrenes

Paikar, A.; Van Trieste III, G.P.; Das, A.; Wang, C.; Sill, T.E.; Bhuvanesh, N.; Powers, D.C. Inorg. Chem., 2023, 62, 12557–12564https://doi.org/10.1021/acs.inorgchem.3c01820

81.

Development of Nonclassical Photoprecursors for Rh2 Nitrenes

Paikar, A.; Van Trieste III, G.P.; Das, A.; Wang, C.; Sill, T.E.; Bhuvanesh, N.; Powers, D.C. Inorg. Chem., 2023, 62, 12557–12564https://doi.org/10.1021/acs.inorgchem.3c01820

80.

Iodanyl Radical Catalysis

Maity A.; Frey B.L.; Powers D.C. Acc. Chem. Res., 2023, 56, 2026–2036.https://doi.org/10.1021/acs.accounts.3c00231

79.

Prospects and challenges for nitrogen-atom transfer catalysis

Cosio, M.N.; Powers, D.C.; Nat. Rev. Chem, 2023. accepted
https://doi.org/10.1038/s41570-023-00482-1

78.

N-Amino pyridinium salts in organic synthesis

Roychowdhury, P.; Samanta, S.; Tan, H.; Powers, D.C.; Org, Chem. Frontiers, 2023. accepted
https://doi.org/10.1039/D3QO00190C

77.

Selective multi-electron aggregation at a hypervalent iodine center by sequential disproportionation

Thai, P.; Frey, B.L.; Figgins,  M.T.; Thompson, R. R.; Carmieli, R.; Powers, D.C.; Chem Comm, 2023. accepted. 
https://doi.org/10.1039/D3CC00549F

76.

Structure–Activity Relationships for Hypervalent Iodine Electrocatalysis

Frey, B. L.; Thai, P.; Patel, L.; Powers, D. C., Synthesis 2023, (EFirst). DOI: 10.1055/a-2029-0617

75.

On the Mechanism of Intermolecular Nitrogen-Atom Transfer from a Lattice-Isolated Diruthenium Nitride Intermediate

Cosio, M.N.; Alharbi, W.; Sur, A.; Wang C.H.; Najafian, A.; Cundari T.R.; Powers, D. C.*; Jones, C.* Faraday Discuss. 2022, Accepted Mauscript DOI: 10.1039/D2FD00167E.

74.

Activation of Inert Arenes using a Photochemically Activated Guanidinato-Magnesium(I) Compound

Mullins, J. C.; Yuvaraj, K.; Jiang, Y.; Van Trieste, G. P., III; Maity, A.; Powers, D. C.*; Jones, C.* Chem. Eur. J. 2022early view. DOI: 10.1002/chem.202202103.

73.

Oxygen-Atom Transfer Photochemically of a Molecular Copper Bromate Complex

Van Trieste III, G. P.; Reibenspies, J. H.; Chen, Y.-S.; Sengupta, D.; Thompson, R. R.; Powers, D. C., Chem. Commun. 2022, 58, 12608–12611. DOI:
10.1039/D2CC04403J

72.

Iodine–Iodine Cooperation Enables Metal-Free C–N Bond-Forming Electrocatalysis via Isolable Iodanyl Radicals

Frey, B. L.; Figgins, M. T.; Van Trieste III, G. P.; Carmieli, R.; Powers, D. C., J. Am. Chem. Soc. 2022, 144, 13913–13919. DOI: 10.1021/jacs.2c05562. (Pre-Print: ChemRXiV, 10.26434/chemrxiv-2022-q01tz).

71.

N-Aminopyridinium reagents as traceless activating groups in the synthesis of N-Aryl aziridines

Tan, H.;  Samanta, S.;  Maity, A.;  Roychowdhury, P.; Powers, D. C., Nat. Commun. 2022, 13, 3341–3350. DOI: 10.1038/s41467-022-31032-w.

70.

Traceless Benzylic C–H Amination via Bifunctional N-Aminopyridinium Intermediates.

Roychowdhury, P., Herrera, R., Tan, H. and Powers, D..C., Angew. Chem. Int. Ed., 202261, e202200665. DOI: 10.1002/anie.202200665.

69.

Diversification of Amidyl Radical Intermediates Derived from C–H Aminopyridylation.

Maity, A.*;  Roychowdhury, P.*;  Herrera, R. G.; Powers, D. C., Org. Lett. 2022, 24, 2762–2766. DOI: 10.1021/acs.orglett.2c00869
*-these authors contributed equally.

68.

Kinetic Probes of the Origin of Activity in MOF-Based C–H Oxidation Catalysis

Sur, A.;  Jernigan, N. B.; Powers, D. C., ACS Catalysis 2022, 12, 3858–3867. DOI: 10.1021/acscatal.1c05415. (Pre-Print: ChemRXiV, 10.26434/chemrxiv-2021-8nllf).

67.

Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes

Schmidt-Räntsch, T.;  Verplancke, H.;  Lienert, J. N.;  Demeshko, S.;  Otte, M.;  Van Trieste Iii, G. P.;  Reid, K. A.;  Reibenspies, J. H.;  Powers, D. C.;  Holthausen, M. C.; Schneider, S., Angew. Chem. Int, Ed. 2022, 61. DOI: 10.1002/anie. e202115626.

66.

Bifunctional N-Aminopyridinium Reagents in Benzylic C–H Amination, Deaminative N-Functionalization Cascades

Roychowdhury, P.; Maity, A.; Powers, D. C. 2021, submitted. (Pre-print: ChemRXiv, 2021, DOI: 10.26434/chemrxiv.14677533.v1). 

65.

Nitrene Photochemistry of Manganese N-Haloamides

Van Trieste, G..P., Reid, K..A., Hicks, M..H., Das, A., Figgins, M..T., Bhuvanesh, N., Ozarowski, A., Telser, J. and Powers, D..C. Angew. Chem. Int, Ed. 2021, 60, 26647–26655.. DOI: 10.1002/anie.202108304.
(Pre print: ChemRXiv, 2021 https://chemrxiv.org/engage/chemrxiv/article-details/60d21b6f403d992809bbf29c.

64.

Cis-Divacant Octahedral Fe(II) in a Dimensionally Reduced Family of 2-(Pyridin-2-yl)pyrrolide Complexes

Hyun, S.-M.; Reid, K. A.; Vali, S. W.; Lindahl, P. A.; Powers, D. C. Inorg. Chem. 2021, 60, 15617–15626. DOI: 10.1021/acs.inorgchem.1c02240. (Pre-print: ChemRXiv, 2021, DOI: 10.33774/chemrxiv-2021-t8vdn). 

63.

Electronic Structure Analysis and Reactivity of the Bimetallic Bis-Titanocene Vinylcarboxylate Complex, [(Cp2Ti)2(O2C3TMS2)].

Huh, D. N.; Maity, A.; Van Trieste, G. P.; Schley, N. D.; Powers, D. C.; Tonks, I. A. Polyhedron, 2021, 207, 115368–115377. DOI: 10.1016/j.poly.2021.115368. 

62.

In crystallo organometallic chemistry

Reid, K.; Powers, D.C. Chem. Commun. 2021, 57, 4993–5003 . DOI: 10.1039/d1cc01684a.

61.

Sustainable Methods in Hypervalent Iodine Chemistry. In Iodine Catalysis in Organic Synthesis

Frey, B. L.; Maity, A.; Tan, H.; Roychowdhury, P.; Powers, D. C. Iodine Catalysis in Organic Synthesis; Muniz, K., Ishihara, K. (Eds.); Wiley-VCH, 2022, 335–386.

60.

Leveraging Exchange Kinetics for the Synthesis of Atomically Precise Porous Catalysts

Ezazi, A. A., Gao, W.,Powers, D.C. ChemCatChem. 2021,13, 2117– 2131. DOI: 10.1002/cctc.202002034.

59.

Synthesis and Characterization of Nitrogen Subvalence in a Pt Metallonitrene.

Sengupta, D.; Powers, D. C. Trends Chem. 2021, 3, 251–253. DOI: 10.1016/j.trechm.2020.11.005.

58.

Dual Polymerization Pathways for Polyolefin-Polar Block Copolymer Synthesis via a Palladium Diimine Complex: Mechanism and Scope.

Dau, H.; Keyes, A.; Basbug Alhan, H. E.; Liu, Y.-S.; Ordonez, E.; Gies, A. P.; Auteung, E.; Zhou, Z.; Maity, A.; Das, A.; Powers, D. C.; Beezer, D. B.*; Harth, E.*J. Am. Chem. Soc2020, 142, 21469–21483. DOI: 10.1021/jacs.0c10588.

57.

In Crystallo Snapshots of Rh2-Catalyzed C–H Amination.

Das, A.; Wang, C.-H.; Van Trieste, G. P., III; Sun, C.-J.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc. 2020, 142, 19862–19867. DOI: 10.1021/jacs.0c09842. (Pre-print: ChemRXiv, 2020, DOI: 10.26434/chemrxiv.12934784.v1).

56.

Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis

Cosio, M.; Cardenal, A. D.; Maity, A.; Hyun, S.-M.; Akwaowo, V.; Hoffman, C.; Powers, T. M.; Powers, D. C. J. Chem. Ed. 202097, 3816–3821. DOI: 10.1021/acs.jchemed.0c00410.

55.

Synthesis of Atomically Precise Single-Crystalline Ru2-Based Coordination Polymers

Gao, W.-Y.; Van Trieste, G. P., III; Powers, D. C. Dalton Trans. 202049, 16077–16081. DOI: 10.1039/D0DT02233K. (Pre-print: ChemRxiv, 2020, DOI: 10.26434/chemrxiv.12556160.v1).

54.

C–H Amination Mediated by Organoazide-bound Dipyrrinato Cobalt Complexes and the Corresponding Cobalt Nitrene Intermediates

Baek, Y.; Das, A.; Zheng, S.-L.; Powers, D. C.; Betley, T. A. J. Am. Chem. Soc. 2020, 142, 11232–11243. doi: 10.1021/jacs.0c04252.

53.

Kinetic Versus Thermodynamic Metalation Enables Synthesis of Isostructural Homo- and Heterometallic Trinuclear Clusters

Hyun, S.-M.; Upadhyay, A.; Das, A.; Burns, C.; Sung, S.; Beaty, J.; Bhuvanesh, N.; Nippe, M.; Powers, D. C. Chem. Commun. 2020, 56, 5893–5896 doi: 10.1039/D0CC02346A. Pre-print: ChemRxiv, 2020, doi: 10.26434/chemrxiv.12056028.

52.

Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization

Gao, W.-Y.; Sur, A.; Wang, C.-H.; Lorzing, G. R.;Antonio, A. M.; Ezazi, A. A.; Bhuvanesh, N.; Bloch, E. D.; and Powers, D. C. Angew. Chem. Ind. Ed. 2020, 59, 10878–10883. doi: 10.1002/anie.202002638. (Pre-print: ChemRxiv, https://doi.org/10.26434/chemrxiv.11879304.v1).

51.

Crystallography of Reactive Intermediates

Das, A.; Van Trieste, G. P. III.; Powers, D. C. Comm. Inorg. Chem., 2020, 40, 116–158. doi: 10.1080/02603594.2020.1747054.

50.

Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates

Maity, A.; Frey, B. L.; Hoskinson, N. D.; Powers, D. C. J. Am. Chem. Soc2020,142, 4990−4995. doi:10.1021/jacs.9b13918. (Pre-print: ChemRxiv, 2019, https://chemrxiv.org/s/f142a8eb0537f4c6213d).

49.

Measuring and Modulating Substrate Confinement during Nitrogen-Atom Transfer in a Ru2-Based Metal-Organic Framework

Wang, C.-H.; Gao, W.-Y.; Powers, D. C. J. Am. Chem. Soc2019141, 19203−19207. doi: 10.1021/jacs.9b09620.
(Pre-print: ChemRxiv, 2019, doi: https://doi.org/10.26434/chemrxiv.9784514.v1).

48.

Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation

Das, A.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc2019141, 16232−16236. doi: 10.1021/jacs.9b09064.
(Pre-print: ChemRxiv, 2019, DOI: https://doi.org/10.26434/chemrxiv.9273395.v1).

47.

The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry

Hyun, S.-M.; Yuan, M.; Maity, A.; Gutierrez, O.; Powers, D. C. Chem 2019, 5, 2388–2404. doi: 10.1016/j.chempr.2019.06.006.

46.

Iodosylbenzene Coordination Chemistry Relevant to MOF Catalysis

Cardenal, A. D.; Maity, A.; Gao, W.-Y.; Ashirov, R.; Hyun, S.-M.; Powers, D. C. Inorg. Chem2019, 58, 10543−10553. doi: 10.1021/acs.inorgchem.9b01191.

45.

Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts

Gao, W.-Y.; Ezazi, A. A.; Wang, C.-H.; Moon, J.; Abney, C.; Wright, J.; Powers, D. C. Organometallics 201938, 3436–3443. doi:10.1021/acs.organomet.9b00162. 
(Pre-print: ChemRxiv, 2019, DOI: 10.26434/chemrxiv.7538747.v1).

44.

High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr(IV) Siloxide Complex and Computational Studies of Related Cr(IV)L4 Systems

Bucinsky, L.; Breza, M.; Powers, D. C.; Hwang, S. J.; Kyzystek, J.; Nocera, D. G.; Telser, J. Inorg. Chem2019, 58, 4907-4920.
doi: 10.1021/acs.inorgchem.8b03512.

43.

Templating Metastable Pd2 Carboxylate Aggregates

Wang, C.-H.; Gao, W.-Y.; Ma, Q.; Powers, D. C. Chem. Sci. 2019, 10, 1823-1830. doi: 10.1039/C8SC04940H.

42.

Hypervalent Iodine Chemistry as a Platform for Aerobic Oxidation Catalysis

Maity, A.; Powers, D. C. Synlett 2019, 30, 257–262. doi: 10.1055/s-0037-1610338. (Invited Highlight).

41.

 In Operando Analysis of Diffusion in Porous Metal-Organic Framework Catalysts

Gao, W.-Y.; Cardenal, A. D.; Wang, C.-H.; Powers, D. C. Chem. Eur. J. 2019, 25, 3465-3476. doi: 10.1002/chem.201804490.

40.

 Observation of a Photogenerated Rh2 Nitrenoid Intermediate in C-H Amination

Das, A.; Maher, A. G.; Telser, J.; Powers, D. C. J. Am. Chem. Soc2018140, 10412-10415. doi: 10.1021/jacs.8b05599.

39.

 Oxidation Catalysis via an Aerobically Generated Dess-Martin Periodinane Analogue

Maity, A.; Hyun, S.-M.; Wortman, A. K.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 7205-7209. doi: 10.1002/anie.201804159. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.6149276)

38.

 Probing Substrate Diffusion in Interstitial MOF CHemistry with Kinetic Isotope Effects

Wang, C.-H.; Das, A.; Gao, W.-Y.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 3676-3681. doi: 10.1002/anie.201713244. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.5883142.v1)

37.

Oxidase Catalysis via Aerobically Generated Hypervalent Iodine Intermediates

Maity, A.; Hyun, S.-M.; Powers, D. C. Nat. Chem.  201810, 200-204. doi: 10.1038/nchem.2873. (Preprint available: ChemRxiv, 2017,
doi: 10.26434/chemrxiv.5419270.v1)

36.

Cis-Decalin Oxidation as a Stereochemical Probe of in-MOF versus on-MOF Catalysis

Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377-7380. doi: 10.1039/C7CC02570J.

35.

Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography

Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C.  J. Am. Chem. Soc. 2017, 139, 2912-2915. doi: 10.1021/jacs.6b13357.

34.

 Oxidation of Metal–Carbon Bonds

Cardenal, A. D.; Powers, D. C. Chem. Molec. Sci. Chem. Eng. 2016, 55, 1–27. doi: 10.1016/B978-0-12-409547-2.13796-5.

91.

Aziridine Group Transfer via Transient N-Aziridinyl Radicals

Biswas, P.; Maity, A.; Figgins, M.T.; Powers* D. C. J. Am. Chem. Soc. 2024, accepted

https://doi.org/10.1021/jacs.4c14169

90.

Metal-Free Aziridination of Unactivated Olefins via Transient N-Pyridinium Iminoiodinanes

Tan, H.;  Thai, P.; Sengupta, U.; Deavenport, I. R.; Kucifer, C. M.; Powers* D. C. JACS Au 2024, accepted.

https://doi.org/10.1021/jacsau.4c00556

89.

Hydrogen-bond activation enables aziridination of unactivated olefins with simple iminoiodinanes

Thai, P.; Patel, L.; Manna, D.; Powers*, D. C. Beilstein J. Org. Chem. 2024, 20, 2305–2312. 

https://doi.org/10.3762/bjoc.20.197

88.

Bidirectional Electron Transfer Strategies for Anti-Markovnikov Olefin Aminofunctionalization via Arylamine Radicals

Roychowdhury, P.; Samanta, S.; Brown, L.M.; Waheed, S.; Powers*, D.C. ACS Catal. 2024, 14, 13156–13162.

https://doi.org/10.1021/acscatal.4c04110

87.

Synthesis of Secondary Amines via Self-Limiting Alkylation

Roychowdhury, P.; Waheed, S.; Sengupta, U.; Herrera, R.G.; Powers*, D.C. Org. Lett. 2024, 23, 4926–4931.

https://doi.org/10.1021/acs.orglett.4c01430

86.

ß-Phenethylamine Synthesis via Latent Dual Electrophilicity of N-Pyridinium Aziridines

Samanta, S.; Biswas, P.; O'Bannon, B.; Powers, D.C. Angew. Chem. Int. Ed. 2024, e202406335.

https://doi.org/10.1002/anie.202406335

85.

Synthesis, characterization, and photochemistry of Ru2(II,III) complexes of chalcogen oxides

Paikar A.; Martinez, E.A.; Powers, D.C. Polyhedron, 2024, 250, 116798.

https://doi.org/10.1016/j.poly.2023.116798

84.

Unlocking Solid-State Organometallic Photochemistry with Optically Transparent, Porous Salt Thin Films

Sur, A.; Simmons, J. D.; Ezazi, A. A.; Korman, K.; Sarkar, S.; Iverson, E.T.; Bloch, E. D.; Powers, D. C. J. Am. Chem. Soc., 2023, 145, 25068-25073. 
https://doi.org/10.1021/jacs.3c09188

83.

Development of Nonclassical Photoprecursors for Rh2 Nitrenes

Paikar, A.; Van Trieste III, G.P.; Das, A.; Wang, C.; Sill, T.E.; Bhuvanesh, N.; Powers, D.C. Inorg. Chem., 2023, 62, 12557–12564
https://doi.org/10.1021/acs.inorgchem.3c01820

82.

Iodanyl Radical Catalysis

Maity A.; Frey B.L.; Powers D.C. Acc. Chem. Res., 2023, 56, 2026–2036.

https://doi.org/10.1021/acs.accounts.3c00231

81.

Prospects and challenges for nitrogen-atom transfer catalysis

Cosio, M.N.; Powers, D.C. Nat. Rev. Chem, 2023. accepted
https://doi.org/10.1038/s41570-023-00482-1

80.

N-Amino pyridinium salts in organic synthesis

Roychowdhury, P.; Samanta, S.; Tan, H.; Powers, D.C. Org, Chem. Frontiers, 2023, 10, 2563–2580
https://doi.org/10.1039/D3QO00190C

79.

Selective multi-electron aggregation at a hypervalent iodine center by sequential disproportionation

Thai, P.; Frey, B.L.; Figgins,  M.T.; Thompson, R. R.; Carmieli, R.; Powers, D.C. Chem. Comm. 2023, 59, 4308–4311
https://doi.org/10.1039/D3CC00549F

78.

Structure–Activity Relationships for Hypervalent Iodine Electrocatalysis

Frey, B. L.; Thai, P.; Patel, L.; Powers, D. C. Synthesis 2023, 55, 3019-3025  DOI: 10.1055/a-2029-0617

77.

Copper Complexes with Diazoolefin Ligands and their Photochemical Conversion into Alkenylidene Complexes.

. Kooij, B.; Varava, P.; Fadaei-Tirani, F.; Scopelliti, R.; Pantazis, D. A.; Van Trieste, G. P., III; Powers, D. C.*; Severin, K.*Angew. Chem. Int. Ed. 2023, 62, e202214899.  https://doi.org/10.1002/anie.202214899

76.

On the Mechanism of Intermolecular Nitrogen-Atom Transfer from a Lattice-Isolated Diruthenium Nitride Intermediate

Cosio, M.N.; Alharbi, W.; Sur, A.; Wang C.H.; Najafian, A.; Cundari T.R.; Powers, D. C.* Faraday Discuss. 2023, 244, 154-168
https://doi.org/10.1039/D2FD00167E

75.

Activation of Inert Arenes using a Photochemically Activated Guanidinato-Magnesium(I) Compound

Mullins, J. C.; Yuvaraj, K.; Jiang, Y.; Van Trieste, G. P., III; Maity, A.; Powers, D. C.*; Jones, C.* Chem. Eur. J. 2022, 28,e202202103.     https://doi.org/10.1002/chem.202202103

74.

Oxygen-Atom Transfer Photochemically of a Molecular Copper Bromate Complex

Van Trieste III, G. P.; Reibenspies, J. H.; Chen, Y.-S.; Sengupta, D.; Thompson, R. R.; Powers, D. C. Chem. Commun. 2022, 58, 12608–12611.          https://doi.org/10.1039/D2CC04403J

72.

Iodine–Iodine Cooperation Enables Metal-Free C–N Bond-Forming Electrocatalysis via Isolable Iodanyl Radicals

Frey, B. L.; Figgins, M. T.; Van Trieste III, G. P.; Carmieli, R.; Powers, D. C. J. Am. Chem. Soc. 2022, 144, 13913–13919. DOI: 10.1021/jacs.2c05562. (Pre-Print: ChemRXiV, 10.26434/chemrxiv-2022-q01tz).

71.

N-Aminopyridinium reagents as traceless activating groups in the synthesis of N-Aryl aziridines

Tan, H.;  Samanta, S.;  Maity, A.;  Roychowdhury, P.; Powers, D. C. Nat. Commun. 2022, 13, 3341–3350. Highlighted in Synform 2022/11, A169-A171 as literature coverage.
DOI: 10.1038/s41467-022-31032-w.

70.

Traceless Benzylic C–H Amination via Bifunctional N-Aminopyridinium Intermediates.

Roychowdhury, P., Herrera, R., Tan, H. and Powers, D.C. Angew. Chem. Int. Ed., 202261, e202200665. DOI: 10.1002/anie.202200665.

69.

Diversification of Amidyl Radical Intermediates Derived from C–H Aminopyridylation.

Maity, A.*;  Roychowdhury, P.*;  Herrera, R. G.; Powers, D. C. Org. Lett. 2022, 24, 2762–2766. DOI: 10.1021/acs.orglett.2c00869
*-these authors contributed equally.

68.

Kinetic Probes of the Origin of Activity in MOF-Based C–H Oxidation Catalysis

Sur, A.;  Jernigan, N. B.; Powers, D. C., ACS Catalysis 2022, 12, 3858–3867. DOI: 10.1021/acscatal.1c05415. (Pre-Print: ChemRXiV, 10.26434/chemrxiv-2021-8nllf).

67.

Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes

Schmidt-Räntsch, T.;  Verplancke, H.;  Lienert, J. N.;  Demeshko, S.;  Otte, M.;  Van Trieste Iii, G. P.;  Reid, K. A.;  Reibenspies, J. H.;  Powers, D. C.;  Holthausen, M. C.; Schneider, S., Angew. Chem. Int, Ed. 2022, 61. DOI: 10.1002/anie. e202115626.

66.

Bifunctional N-Aminopyridinium Reagents in Benzylic C–H Amination, Deaminative N-Functionalization Cascades

Roychowdhury, P.; Maity, A.; Powers, D. C. 2021, submitted. (Pre-print: ChemRXiv, 2021, DOI: 10.26434/chemrxiv.14677533.v1). 

65.

Nitrene Photochemistry of Manganese N-Haloamides

Van Trieste, G..P., Reid, K..A., Hicks, M..H., Das, A., Figgins, M..T., Bhuvanesh, N., Ozarowski, A., Telser, J. and Powers, D..C. Angew. Chem. Int, Ed. 2021, 60, 26647–26655.. DOI: 10.1002/anie.202108304.
(Pre print: ChemRXiv, 2021 https://chemrxiv.org/engage/chemrxiv/article-details/60d21b6f403d992809bbf29c.

64.

Cis-Divacant Octahedral Fe(II) in a Dimensionally Reduced Family of 2-(Pyridin-2-yl)pyrrolide Complexes

Hyun, S.-M.; Reid, K. A.; Vali, S. W.; Lindahl, P. A.; Powers, D. C. Inorg. Chem. 2021, 60, 15617–15626. DOI: 10.1021/acs.inorgchem.1c02240. (Pre-print: ChemRXiv, 2021, DOI: 10.33774/chemrxiv-2021-t8vdn). 

63.

Electronic Structure Analysis and Reactivity of the Bimetallic Bis-Titanocene Vinylcarboxylate Complex, [(Cp2Ti)2(O2C3TMS2)].

Huh, D. N.; Maity, A.; Van Trieste, G. P.; Schley, N. D.; Powers, D. C.; Tonks, I. A. Polyhedron, 2021, 207, 115368–115377. DOI: 10.1016/j.poly.2021.115368. 

62.

In crystallo organometallic chemistry

Reid, K.; Powers, D.C. Chem. Commun. 2021, 57, 4993–5003 . DOI: 10.1039/d1cc01684a.

61.

Sustainable Methods in Hypervalent Iodine Chemistry. In Iodine Catalysis in Organic Synthesis

Frey, B. L.; Maity, A.; Tan, H.; Roychowdhury, P.; Powers, D. C. Iodine Catalysis in Organic Synthesis; Muniz, K., Ishihara, K. (Eds.); Wiley-VCH, 2022, 335–386.

60.

Leveraging Exchange Kinetics for the Synthesis of Atomically Precise Porous Catalysts

Ezazi, A. A., Gao, W.,Powers, D.C. ChemCatChem. 2021,13, 2117– 2131. DOI: 10.1002/cctc.202002034.

59.

Synthesis and Characterization of Nitrogen Subvalence in a Pt Metallonitrene.

Sengupta, D.; Powers, D. C. Trends Chem. 2021, 3, 251–253. DOI: 10.1016/j.trechm.2020.11.005.

58.

Dual Polymerization Pathways for Polyolefin-Polar Block Copolymer Synthesis via a Palladium Diimine Complex: Mechanism and Scope.

Dau, H.; Keyes, A.; Basbug Alhan, H. E.; Liu, Y.-S.; Ordonez, E.; Gies, A. P.; Auteung, E.; Zhou, Z.; Maity, A.; Das, A.; Powers, D. C.; Beezer, D. B.*; Harth, E.*J. Am. Chem. Soc2020, 142, 21469–21483. DOI: 10.1021/jacs.0c10588.

57.

In Crystallo Snapshots of Rh2-Catalyzed C–H Amination.

Das, A.; Wang, C.-H.; Van Trieste, G. P., III; Sun, C.-J.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc. 2020, 142, 19862–19867. DOI: 10.1021/jacs.0c09842. (Pre-print: ChemRXiv, 2020, DOI: 10.26434/chemrxiv.12934784.v1).

56.

Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis

Cosio, M.; Cardenal, A. D.; Maity, A.; Hyun, S.-M.; Akwaowo, V.; Hoffman, C.; Powers, T. M.; Powers, D. C. J. Chem. Ed. 202097, 3816–3821. DOI: 10.1021/acs.jchemed.0c00410.

55.

Synthesis of Atomically Precise Single-Crystalline Ru2-Based Coordination Polymers

Gao, W.-Y.; Van Trieste, G. P., III; Powers, D. C. Dalton Trans. 202049, 16077–16081. DOI: 10.1039/D0DT02233K. (Pre-print: ChemRxiv, 2020, DOI: 10.26434/chemrxiv.12556160.v1).

54.

C–H Amination Mediated by Organoazide-bound Dipyrrinato Cobalt Complexes and the Corresponding Cobalt Nitrene Intermediates

Baek, Y.; Das, A.; Zheng, S.-L.; Powers, D. C.; Betley, T. A. J. Am. Chem. Soc. 2020, 142, 11232–11243. doi: 10.1021/jacs.0c04252.

53.

Kinetic Versus Thermodynamic Metalation Enables Synthesis of Isostructural Homo- and Heterometallic Trinuclear Clusters

Hyun, S.-M.; Upadhyay, A.; Das, A.; Burns, C.; Sung, S.; Beaty, J.; Bhuvanesh, N.; Nippe, M.; Powers, D. C. Chem. Commun. 2020, 56, 5893–5896 doi: 10.1039/D0CC02346A. Pre-print: ChemRxiv, 2020, doi: 10.26434/chemrxiv.12056028.

52.

Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization

Gao, W.-Y.; Sur, A.; Wang, C.-H.; Lorzing, G. R.;Antonio, A. M.; Ezazi, A. A.; Bhuvanesh, N.; Bloch, E. D.; and Powers, D. C. Angew. Chem. Ind. Ed. 2020, 59, 10878–10883. doi: 10.1002/anie.202002638. (Pre-print: ChemRxiv, https://doi.org/10.26434/chemrxiv.11879304.v1).

51.

Crystallography of Reactive Intermediates

Das, A.; Van Trieste, G. P. III.; Powers, D. C. Comm. Inorg. Chem., 2020, 40, 116–158. doi: 10.1080/02603594.2020.1747054.

50.

Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates

Maity, A.; Frey, B. L.; Hoskinson, N. D.; Powers, D. C. J. Am. Chem. Soc2020,142, 4990−4995. doi:10.1021/jacs.9b13918. (Pre-print: ChemRxiv, 2019, https://chemrxiv.org/s/f142a8eb0537f4c6213d).

49.

Measuring and Modulating Substrate Confinement during Nitrogen-Atom Transfer in a Ru2-Based Metal-Organic Framework

Wang, C.-H.; Gao, W.-Y.; Powers, D. C. J. Am. Chem. Soc2019141, 19203−19207. doi: 10.1021/jacs.9b09620.
(Pre-print: ChemRxiv, 2019, doi: https://doi.org/10.26434/chemrxiv.9784514.v1).

48.

Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation

Das, A.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc2019141, 16232−16236. doi: 10.1021/jacs.9b09064.
(Pre-print: ChemRxiv, 2019, DOI: https://doi.org/10.26434/chemrxiv.9273395.v1).

47.

The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry

Hyun, S.-M.; Yuan, M.; Maity, A.; Gutierrez, O.; Powers, D. C. Chem 2019, 5, 2388–2404. doi: 10.1016/j.chempr.2019.06.006.

46.

Iodosylbenzene Coordination Chemistry Relevant to MOF Catalysis

Cardenal, A. D.; Maity, A.; Gao, W.-Y.; Ashirov, R.; Hyun, S.-M.; Powers, D. C. Inorg. Chem2019, 58, 10543−10553. doi: 10.1021/acs.inorgchem.9b01191.

45.

Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts

Gao, W.-Y.; Ezazi, A. A.; Wang, C.-H.; Moon, J.; Abney, C.; Wright, J.; Powers, D. C. Organometallics 201938, 3436–3443. doi:10.1021/acs.organomet.9b00162. 
(Pre-print: ChemRxiv, 2019, DOI: 10.26434/chemrxiv.7538747.v1).

44.

High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr(IV) Siloxide Complex and Computational Studies of Related Cr(IV)L4 Systems

Bucinsky, L.; Breza, M.; Powers, D. C.; Hwang, S. J.; Kyzystek, J.; Nocera, D. G.; Telser, J. Inorg. Chem2019, 58, 4907-4920.
doi: 10.1021/acs.inorgchem.8b03512.

43.

Templating Metastable Pd2 Carboxylate Aggregates

Wang, C.-H.; Gao, W.-Y.; Ma, Q.; Powers, D. C. Chem. Sci. 2019, 10, 1823-1830. doi: 10.1039/C8SC04940H.

42.

Hypervalent Iodine Chemistry as a Platform for Aerobic Oxidation Catalysis

Maity, A.; Powers, D. C. Synlett 2019, 30, 257–262. doi: 10.1055/s-0037-1610338. (Invited Highlight).

41.

 In Operando Analysis of Diffusion in Porous Metal-Organic Framework Catalysts

Gao, W.-Y.; Cardenal, A. D.; Wang, C.-H.; Powers, D. C. Chem. Eur. J. 2019, 25, 3465-3476. doi: 10.1002/chem.201804490.

40.

 Observation of a Photogenerated Rh2 Nitrenoid Intermediate in C-H Amination

Das, A.; Maher, A. G.; Telser, J.; Powers, D. C. J. Am. Chem. Soc2018140, 10412-10415. doi: 10.1021/jacs.8b05599.

39.

 Oxidation Catalysis via an Aerobically Generated Dess-Martin Periodinane Analogue

Maity, A.; Hyun, S.-M.; Wortman, A. K.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 7205-7209. doi: 10.1002/anie.201804159. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.6149276)

38.

 Probing Substrate Diffusion in Interstitial MOF CHemistry with Kinetic Isotope Effects

Wang, C.-H.; Das, A.; Gao, W.-Y.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 3676-3681. doi: 10.1002/anie.201713244. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.5883142.v1)

37.

Oxidase Catalysis via Aerobically Generated Hypervalent Iodine Intermediates

Maity, A.; Hyun, S.-M.; Powers, D. C. Nat. Chem.  201810, 200-204. doi: 10.1038/nchem.2873. (Preprint available: ChemRxiv, 2017,
doi: 10.26434/chemrxiv.5419270.v1)

36.

Cis-Decalin Oxidation as a Stereochemical Probe of in-MOF versus on-MOF Catalysis

Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377-7380. doi: 10.1039/C7CC02570J.

35.

Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography

Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C.  J. Am. Chem. Soc. 2017, 139, 2912-2915. doi: 10.1021/jacs.6b13357.

34.

 Oxidation of Metal–Carbon Bonds

Cardenal, A. D.; Powers, D. C. Chem. Molec. Sci. Chem. Eng. 2016, 55, 1–27. doi: 10.1016/B978-0-12-409547-2.13796-5.

Prior to independent career

33.  Multielectron C–H Photoactivation with an Sb(V) Oxo Corrole

Lemon, C. M.; Maher, A. G.; Mazzotti, A. R.; Powers, D. C.; Nocera, D. G. Chem. Comm. 2020, 56, 5247–5250.

doi: 10.1039/C9CC09892E.

32.  Halogen Photoelimination from Sb(V) Dihalide Corroles

Lemon, C. M.; Hwang, S. J.; Maher, A. G.; Powers, D. C.; Nocera, D. G. Inorg. Chem. 2018, 57, 5333-5342.

doi: 10.1021/acs.inorgchem.8b00314.

31. Gold Corroles as Near-IR Phosphors for Oxygen Sensing

Lemon, C. M.; Powers, D. C.; Brother, P. J.; Nocera, D. G.  Inorg. Chem. 201756, 10991–10997.

30. The Energetics and Mechanism of Cl2 Elimination from Binuclear Pt(III) Complexes

Powers, D. C.; Hwang, S. J.; Anderson, B. L.; Yang, H.; Zheng, S.-L. Chen, Y.-S.; Cook, T. R.; Gabbai, F. P.; Nocera, D. G. Inorg. Chem. 2016, 55, 11815–11820.

29. Electronic Structure of Copper Corroles

Lemon, C. M.; Huynh, M.; Maher, A. G.; Anderson, B. L.; Bloch, E. D.; Powers, D. C.; Nocera, D. G. Angew. Chem., Int. Ed. 201655,

2176–2180.

28. Secondary Coordination Sphere Effects in Halogen Photoelimination from Monomeric Ni(III) Complexes 

Hwang, S. J.; Anderson, B. L.; Powers, D. C.; Maher, A. G.; Hadt, R. G.; Nocera, D. G. Organometallics 201534, 4766–4774.

27. Trap-Free Chlorine Photoelimination from Mononuclear Ni(III) Complexes

Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2015137, 6472–6475.

26.  Tandem Redox Mediator/Ni(II) Trihalide Complex Photocycle for Hydrogen Evolution from HCl 

Hwang, S. J.; Powers, D. C.; Maher, A. G.; Nocera, D. G. Chem. Sci. 20156, 917–922.

25. Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes 

Ullman, A. M.; Liu, Y.; Bediako, D. K.; Huynh, M.; Wang, H.; Anderson, B. L.; Powers, D. C.; Breen, J. J. Abruña, H. D.; Nocera, D. G. J. Am. Chem. Soc2014136, 17681–17688.

24.  Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations 

Powers, D. C.; Anderson, B. L.; Hwang, S. J.; Powers, T. M.; Pérez, L. M.; Hall, M. B.; Zheng, S.-L.; Chen, Y.-S.; Nocera; D. G. J. Am. Chem. Soc. 2014136, 15346–15355. (Highlighted in: Nature Chem. 20157, 12–13.)

23. Theoretical Analysis of Cobalt Hangman Porphyrins: Ligand Dearomatization and Mechanistic Implications for Hydrogen Evolution

Solis, B. H.; Maher, A. G.; Honda, T. Powers, D. C.; Nocera, D. G.; Hammes-Schiffer, S. ACS Catal. 20144, 4516–4526.

22. Halide-Bridged Binuclear HX-Splitting Catalysts 

Powers, D. C.; Hwang, S. J.; Zheng, S.-L.; Nocera, D. G. Inorg. Chem. 201453, 9122–9128.

21. Oxidation of Carbon–Metal Bonds 

Powers, D. C.; Ritter, T.  Comp. Org. Synth. 2014, Chapter 7.27.

20. Metal–Metal Bond-Containing Complexes as Catalysts for C–H Functionalization 

Kornecki, K.; Berry, J. F.; Powers, D. C.; Ritter, T. Prog. Inorg. Chem. 201458, 223–300.

19. Two-Electron Photoreduction of a Ni(II) Halide Enables H2 Evolution from HCl

Powers, D. C.; Anderson, B. L.; Nocera, D. G. J. Am. Chem. Soc. 2013135, 18876–18883.

18.  Halogen Photoelimination from Dirhodium Phosphazane Complexes via Chloride-Bridged Intermediates 

Powers, D. C.; Chambers, M. B.; Teets, T. S.; Elgrishi, N.; Anderson, B. L.; Nocera, D. G. Chem. Sci. 20134, 2880–2885.

17. A Transition State Analogue for the Oxidation of Binuclear Palladium(II) to Binuclear Palladium(III) Complexes 

Powers, D. C.; Ritter, T.  Organometallics 201332, 2042–2045.

16. Bimetallic Catalysis with Palladium 

Powers, D. C.; Ritter, T. In Science of Synthesis; Trost, B. M.; Stoltz, B. M., Eds.; Thieme: Stuttgart, 2012; Vol. 1, 1–31.

15. Connecting Binuclear Pd(III) and Mononuclear Pd(IV) Chemistry by Pd–Pd Bond Cleavage 

Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012134, 12002–12009. 

14. Bimetallic Redox Synergy in Oxidative Palladium Catalysis 

Powers, D. C.; Ritter, T.  Acc. Chem. Res. 2012, 45, 840–850. 

13. Synthesis and Structure of Solution-Stable One-Dimensional Palladium Wires 

Campbell, M. G.; Powers, D. C.; Raynaud, J.; Graham, M. J.; Xie, P.; Lee, E.; Ritter, T. Nature Chem. 20113, 949–953. 

12. A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging 

Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011334, 639–642. 

11. Palladium(III) in Synthesis and Catalysis

Powers, D. C.; Ritter, T.  Top. Organomet. Chem. 201135, 129–156.

10. On the Mechanism of Palladium-Catalyzed Aromatic C–H Oxidation 

Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am. Chem. Soc. 2010132, 14530–14536. 

9. Bimetallic Reductive Elimination from Dinuclear Pd(III) Complexes 

Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14092–14103.

8. Bimetallic Palladium Catalysis: Direct Observation of Pd(III)–Pd(III) Intermediates 

Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009131, 17050–17051.

7. Bimetallic Pd(III) Complexes in Palladium-Catalysed Carbon–Heteroatom Bond Formation

Powers, D. C.; Ritter, T.  Nature Chem. 20091, 302–309. (Highlighted in: Nature 2009459, 917–918.)

6.  Thermal Isomerizations of cis,anti,cis-Tricyclo[6.4.0.02,7]dodec-3-ene to trans- and cis-endo-Tricyclo[6.2.2.02,7]dodec-9-ene: Diradical Conformations and Stereochemical Outcomes in [1,3] Carbon Shifts 

Baldwin, J. E.; Bogdan, A. R.; Leber, P. A.; Powers, D. C. Tetrahedron 200763, 6331–6338.

5. Thermal Chemistry of Bicyclo[4.2.0]oct-2-enes 

Powers, D. C.; Leber, P. A.; Gallagher, S. S.; Higgs, A. T.; McCullough, L. A.; Baldwin, J. E. J. Org. Chem. 200772, 187–194.

4. Thermal Reactions of 7-d- and 8-d-Bicyclo[4.2.0]oct-2-enes  

Baldwin, J. E.; Leber, P. A.; Powers, D. C. J. Am. Chem. Soc. 2006128, 10020–10021.

3. Thermal Reactions of 8-Methylbicyclo[4.2.0]oct-2-enes: Competitive Diradical-Mediated [1,3] Sigmatropic, Stereomutation, and Fragmentation Processes 

Bogle, X. S.; Leber, P. A.; McCullough, L. A.; Powers, D. C. J. Org. Chem200570, 8913–8918.

2. Thermal Isomerization of cis,anti,cis-Tricyclo[6.3.0.02,7]undec-3-ene to endo-Tricyclo[5.2.2.02,6]undec-8-ene 

Baldwin, J. E.; Bogdan, A. R.; Leber, P. A.; Powers, D. C. Org. Lett. 20057, 5195–5197.

1. Analysis of Natural Buffer Systems and the Impact of Acid Rain. An Environmental Project for First-Year Chemistry Students 

Powers, D. C.; Higgs, A. T.; Obley, M. L.; Leber, P. A.; Hess, K. R.; Yoder, C. H.  J. Chem. Educ. 200582, 274–277.

bottom of page